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Abstract: Interconnected computers and software systems have become an indispensable part of
people’s lives in the period of digital transformation. Consequently, software quality research is
becoming more and more critical. There have been multiple attempts to synthesise knowledge
gained in software quality research; however, they were focused mainly on single aspects of software
quality and did not structure the knowledge holistically. To fill this gap, we harvested software
quality publications indexed in the Scopus bibliographic database. We analysed them using synthetic
content analysis which is a triangulation of bibliometrics and content analysis. The search resulted in
15,468 publications. The performance bibliometric analysis showed that the production of research
publications relating to software quality is currently following an exponential growth trend and that
the software quality research community is growing. The most productive country was the United
States, followed by China. The synthetic content analysis revealed that the published knowledge
could be structured into six themes, the most important being the themes regarding software quality
improvement by enhancing software engineering, advanced software testing and improved defect
and fault prediction with machine learning and data mining.

Keywords: software engineering; software quality; knowledge synthesis; bibliometrics; synthetic
knowledge synthesis

1. Introduction

The digital transformation caused interconnected computers and software systems
to become an indispensable part of our lives and the necessary toll for performing their
daily personal and business obligations and activities [1]. To fulfil global user needs for
storing, retrieving and processing information, knowledge and wisdom, those systems
have to be supported by quality software, which should function correctly and reliably, be
easy, safe and fit to use, test, reuse and maintain, and finally to conform to stakeholders’
requirements. Therefore, software quality is not only one of the most important but also a
multidimensional attribute of computer software [2–4].

Consequently, there have been multiple attempts to synthesise knowledge gained in
software quality research; however, they were focused mainly on single aspects of software
quality, such as measurement [5], human-software interaction [6], empirical analysis of
Code smells and refactoring [7], design patterns [8]; quality models [9], human factors [10],
testing [11] and quality prediction [12,13] or to specific development approaches such as
agile [14].

Bibliometrics is another approach to synthesise knowledge [15]. Similarly to the above,
the only two bibliometrics studies concerned with software quality were focused on specific
aspects of software quality, one on defect prediction [16] and the other on code smells [17].

To close the gap regarding the lack of holistic knowledge synthesis studies of soft-
ware quality research, we performed a performance bibliometric analysis and synthetic
bibliometric mapping-based content analysis. We aimed to identify the most productive
countries and institutions, most prolific source titles, publication production trends and hot
topics, and structure the research content into themes and trends.
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The choice to focus on software quality was motivated by the belief that software
quality assurance is a crucial factor in software development for a myriad of stakeholders
such as software developers, theoreticians, practitioners and of course, software users. The
study can help them gain new insights into the topic, deepen their knowledge or inform
them about the trends and essential themes in software quality research. To the best of
our knowledge, a similar quantitative and qualitative bibliometric study that provides
an overview of the current state and development of software quality research from its
beginnings to the present has not been conducted so far. Therefore, we eliminate this
shortcoming through the present study and fill in the current gap.

2. Materials and Methods

Knowledge synthesis is an approach to deal with the explosive growth in research
literature production. Knowledge synthesis roots date back more than 120 years. However,
they became more popular in the 1960s [18] and even more commonly used toward the
end of the millennia with the emergence of the evidence-based paradigm [19,20]. Content
analysis is one of the more popular knowledge synthesis methods used in qualitative and
quantitative research. Its main advantages are that it is content-sensitive, highly flexible
and can be used to analyse many types of data in an inductive or deductive manner [21].

To enable the knowledge synthesis of several thousand or even ten thousand publica-
tions, Kokol et al. [22] triangulated descriptive bibliometrics, text mining and bibliometric
mapping and content analysis into Synthetic knowledge synthesis. In addition to semi-
automatic analysis of large corpora, the combination of the above approaches enables one
to combine quantitative and qualitative analysis of the content and production of research
publications. The qualitative part of the synthetic knowledge synthesis was performed
with the Algorithm presented below:

1. Harvest the research publications concerning software quality. The corpus of retrieved
publications represents the content to analyse and the output of Step 1.

2. Identify codes in the corpus using text mining and cluster them into an author’s
keyword landscape with bibliometric mapping. Authors’ keywords were selected as
codes since they most concisely present the content of a publication. The author’s
keyword landscape is the output from Step 2.

3. Condense author keywords with similar meanings into codes for every single cluster
and analyse the links between codes in individual clusters, and then map them into
categories which form the output from Step 3.

4. Analyse categories and name each cluster with an appropriate theme. The list of
themes is the final output of the qualitative analysis.

In Step 1, the publications were harvested from Scopus (Elsevier, Amsterdam, The
Netherlands), the largest abstract and citation database of peer-reviewed literature. The
corpus was formed on 14 April 2022, for the whole period covered by Scopus. We used the
search string “quality software” OR “quality of software” OR “software quality” in informa-
tion source titles, abstracts, and keywords. The reliability of the search was assessed using
recall (fraction of the documents that are relevant to the query that is successfully retrieved)
information retrieval functions using 20 important software quality publications and ten
eminent authors (19 publications and all authors were retrieved). The publications and
authors were selected based on the discussions with colleagues concerned with software
engineering research. Using Scopus built-in functions, we exported the following metadata
to a CSV formatted corpus file: publication titles, authors’ affiliations’ details, source title,
publication type, publishing year, author keywords and funding data.

Bibliometric mapping in Step 2 has been performed using VOSViewer software version
1.6.16 (Leiden University, The Netherlands). VOSViewer uses text mining to recognise
various text entities in publications such as terms, keywords and country names. Next, it
employs the mapping technique, Visualisation of Similarities (VoS), based on the co-word
analysis. Landscapes are displayed in various ways to present different aspects of the
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research publications’ content [23]. Steps 3 and 4 were performed using the traditional
content analysis process [21].

3. Results and Discussion
3.1. Descriptive Bibliometrics

The search resulted in 15,468 publications. Among them were 9457 conference papers,
4845 journal articles, 401 conference reviews, 294 book chapters, 283 reviews, 74 editorials,
63 books, 31 short papers and 20 other types of publications.

The first paper indexed in Scopus was a conference paper titled Teaching software
development in a studio environment published in 1954 [24]. After that (Figure 1), the pro-
duction was low, not exceeding five publications per year till 1978 when the linear growth
trend began, followed by exponential growth starting in 2001. The peak productivity was
reached in 2019 with 1082 publications. The trend of the number of conference proceedings
and journal papers followed a similar pattern till 2001, then the trend split. The number of
journal papers followed a steady exponential trend reaching 400 journal articles in 2020,
while the number of conference papers had an explosive growth period from 2001 till
2007. After that, the number of conference papers remained steady till 2018 and peaked
in 2019 with 701 papers. According to the above trends, we can identify three milestones
in software quality research, namely: (1) The beginning of the seventies when the first
software crisis emerged [25]; (2) the end of the seventies when software quality models and
measurements started to gain in importance [26]; and finally (3) in the beginning of the
new century with the advent of agile programming [27].

Figure 1. The dynamics of the software quality research expressed by the number of peer-reviewed publications.

Spatial Distribution and Productivity of Literature Production

The most prolific countries in software quality research according to the number of
publications are presented in Table 1. Among them, India, China and Brazil belong among
the 10 best countries to outsource software development [28]. The United States, Germany,
India and the United Kingdom are the countries with the largest number of software
engineers [29]. As expected, the most prolific institutions (Table 2) are primarily located in
most prolific countries.
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Table 1. Most productive countries.

Country Number of Publications

United States 2917
China 1684
India 1436

Germany 961
Canada 734
Brazil 698

United Kingdom 626
Italy 510
Spain 428
Japan 427

Table 2. Most productive institutions.

Institution Number of Publications

Florida Atlantic University 227
Beihang University 127
Amity University 99
Peking University 95

Carnegie Mellon University 87
Universidade de São Paulo 86

Technical University of Munich 83
École de Technologie Supérieure 80

Chinese Academy of Sciences 79
Fraunhofer Institute for Experimental Software

Engineering IESE 75

The most prolific source titles (Table 3) are mainly conference and workshop pro-
ceedings. Most prolific journals are prestigious top software engineering journals with
high SNIP 2020 impact factors. SNIP “measures contextual citation impact by weighting
citations based on the total number of citations in a subject field, using Scopus data” [30].

Table 3. Most prolific journals.

Source Title Number of Publications SNIP 2020

Lecture Notes in Computer Science Including Subseries Lecture
Notes in Artificial Intelligence And Lecture Notes

In Bioinformatics
737 0.628

ACM International Conference Proceeding Series 394 0.296
Proceedings International Conference on Software Engineering 324 1.68

Communications In Computer and Information Science 226 0.32
Ceur Workshop Proceedings 221 0.345

Information And Software Technology 214 2.389
Software Quality Journal 191 1.388

Advances In Intelligent Systems and Computing 190 0.428
Journal Of Systems and Software 186 2.16

IEEE Software 152 1.934

According to the number of publications where a funding agency was mentioned in
the funding acknowledgement (Table 4), the most prolific funding agency is the National
Natural Science Foundation of China (n = 318), followed by the US National Science Foun-
dation (n = 182) and European Commission (n = 132). Based on funding acknowledgements
analysis, only 21.5% of publications were sponsored, which is far less than for software
engineering in general (n = 32.3%) [31]. That might indicate that software quality research
is underfunded and did not yet reach the status of other software engineering disciplines.
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Most productive funding institutions are located in China and Europe, and surprisingly
not as expected by other bibliometrics performance attributes, in the United States.

Table 4. Most prolific funding agencies.

Funding Agency Number of Publications

National Natural Science Foundation of China 318
National Science Foundation (USA) 182

European Commission 132
Horizon 2020 Framework Programme (EU) 97

Conselho Nacional de Desenvolvimento
Científico e Tecnológico (Brazil) 89

Natural Sciences and Engineering Research
Council of Canada 77

Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior (Brazil) 76

National Key Research and Development
Program of China 66

European Regional Development Fund 65
Japan Society for the Promotion of Science 61

3.2. Qualitative Synthetic Knowledge Synthesis
3.2.1. Text Mining and Bibliometric Mapping

The 15,468 publications from the corpus were analysed using VOSviewer software
(Step 2 of the algorithm). Text mining identified 19,084 author keywords. All keywords
emerging in at least 40 papers (116 authors’ keywords) were included in the bibliometric
mapping analysis. The resulting author keywords landscape is shown in Figure 2.

Figure 2. Authors’ keywords cluster landscape.
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3.2.2. Content Analysis

During the 3rd and 4th steps of the algorithm, author keywords were condensed into
34 codes. Those codes were next reduced into 16 categories. By analysing links between
categories and codes, we finally identified six themes of software quality presented below
and in Table 5:

• Software process improvement: The most impactful research regarding the number
of citations was done around the beginning of the new millennia and was related to
software process maturity [32,33] and the importance of top management leadership,
management infrastructure and stakeholder participation [34]. Recent important re-
search is still concerned with process maturity, but CMM(I) is combined with DevOps
and agile approaches [35–37].

• Metric-based software maintenance: Most cited papers related to this theme were
published in the period 1993–2010 and are concerned with object-oriented metrics to
predict maintainability [38], metrics-based refactoring [39], predicting faults [40] and
code readability metrics [41]. Recent impactful papers deal with technical debt [42],
code smells and refactoring [43] and test smells [44].

• Software evolution and refactoring: The most influential research was published in
the past decade and was concerned with the prediction of software evolution [45,46],
automatic detection of bad smells which can trigger refactoring [47–49], the association
of software defect and refactoring [50].

• Quality assurance in initial phases of software development life cycles: The impact-
ful papers were published after the end of millennia. The research was mainly focused
on how to assure software quality on the architectural level [51,52] and software
requirements [53–55].

• Search-based software engineering for defect prediction and classification: The re-
search on this theme has become important in the last 15 years. The research mainly
used data mining and machine learning to predict software defects and failures using
static codes and other software documents [56–58].

• Software quality management and assurance with testing and inspections: This
theme is the most established, with influential papers starting to be published around
40 years ago [59–61]. Recent research is concerned with regression testing [11], predic-
tive mutation testing [62], metamorphic testing [63] and modern code reviews [64].

3.3. Hot Topics

To identify hot topics, we extended the methodology developed by Kokol et al. [65]
with the synthetic content analysis. We used this extended approach to compare the corpus
of publications published in 2018 and 2019 with the corpus of publications published in
2020 and 2021. All the new categories and themes emerging in 2020/21, and the categories
and themes emerging in 2018/19 mostly cited in 2020/21 were recognised as hot topics. In
that manner, we identified:

• A new theme: Improving software development with the Integration of CMMI into
agile approaches [66].

• New categories:

o Natural language processing of software documents to elicit high-quality re-
quirements [67].

o Software quality attributes in agile environments [68].
o Software architectures for the internet of things [69].
o Software maintenance of blockchain-based software [70].

• Most cited categories in 2020/21:

o Detecting code smells with genetic algorithms [71].
o Use of Artificial intelligence in risk management [72].
o Use multi-criteria decision-making in software quality modelling [73].
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Table 5. Software quality research themes (numbers in parenthesis present the number of publications
in which an author keyword appeared).

Colour Codes Concepts/Categories Themes

Red (26 keywords))

Software engineering (641),
Software quality assurance

and management (330), Agile
software development (319),
Software development (276),

Software process
improvement (203), Software

process (109), Software
reuse (91), Project
management (90)

Software quality assurance
with project and knowledge

management; software
process improvement with

agile approaches and CMMI;
software reuse with

production lines based on
software quality metrics;

Software process
improvement

Green (21 keywords)

Software testing (694),
Metrics (578), Reliability (108);

Maintainability (135),
UML (80); Genetics

algorithms (71)

Metrics-based software testing
supported by genetic
algorithms; using and

predicting maintainability
metrics like reusability,
complexity, cohesion,

and coupling;

Metric-based software
maintenance

Blue (20 keywords)

Software quality (2685),
Empirical studies in software

engineering (281),
Refactoring (226), Software

maintenance (259), Technical
depth and code smells (183),

Software evolution (130),)

Mining software repositories
to support empirical and

search software engineering;
software evolution with

refactoring based on code
smells; technical debts and
code smells in association

with software maintenance;

Software evolution and
refactoring

Yellow (19 keywords)

Software architecture (253),
Software reliability (233),

Requirements engineering
(226), Software quality

models (214), Usability (108),
Quality metrics and

attributes (136), Quality
assessment and
evaluation (99)

Quality attributes of software
requirements and architecture;
quality attributes of software
quality models and standards;

general quality metrics like
reliability; security,

and usability;

Quality assurance in initial
phases of software

development life cycles

Viollet (16 keywords)

Software metrics (568),
Machine learning and data

mining (479); Fault and defect
prediction (228)

Use of software metrics and
data mining in defect

prediction and classification;

Search-based software
engineering for defect

prediction and classification

Light blue (14 keywords)
Quality (221), Software (204);

Quality management and
assurance (164); Testing (148);

Testing and inspection,
verification and validation;

testing automation;
programming productivity

and quality

Software quality management
and assurance with testing

and inspections

3.4. How Much Does the Software Quality Matter?

According to our synthesis, the volume, distribution and scope of quality research,
as well as the research community and the research literature production, are growing,
following the ever-growing importance of software in almost all human activities and
recognising the potentially catastrophic consequences of quality defects, despite the fact
that significant part of software quality research is still presented at conferences a ro-
bust, and well-researched body of evidence is forming but is not yet achieved in yet
to be established core journals. Based on identified trends and best practices in overall
software quality, substantial research in software quality exists but would need to be tai-
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lored and extended to the specific requirements of software quality sub-disciplines and
application domains.

3.5. Strengths and Limitations

The study’s main strength is that it is the first holistic content analysis of software
quality research. Another strength is that content analysis was performed using a novel
synthetic knowledge synthesis approach. One possible limitation is that the analysis was
limited to publications indexed in Scopus only; however, because Scopus covers the largest
and most complete set of information titles, we believe that we analysed most of the
important peer-reviewed publications.

4. Conclusions

Our bibliometric study showed that the production of research publications relating to
software quality is currently following an exponential growth trend and that the software
quality research community is growing. The synthetic content analysis revealed that the
published knowledge could be structured into six themes, most important being the themes
regarding software quality improvement by enhancing software engineering, advanced
software testing and improved defect and fault prediction with machine learning and data
mining. According to the analysis of the hot topics, it seems that future research will be
directed into developing and using a whole spectre of new artificial intelligence tools (not
just machine learning and data mining) and focusing on ensuring software quality in agile
development paradigms.

The main contributions of or study are first, a holistic and better understanding of
the software quality concept based on the triangulation of quantitative and qualitative
analysis, which provides a landscape, performance and spatial attributes of the software
quality research. Second, this study provides a paradigm for future studies in software
development and digital transformation topics research.

Funding: This research was funded by ARRS, grant number J7-2605.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.
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